Adapting Machine Learning Technique for Periodicity Detection in Nucleosomal Locations in Sequences
نویسندگان
چکیده
DNA sequence is an important determinant of the positioning, stability, and activity of nucleosome, yet the molecular basis of these remains elusive. Positioned nucleosomes are believed to play an important role in transcriptional regulation and for the organization of chromatin in cell nuclei. After completing the genome project of many organisms, sequence mining received considerable and increasing attention. Many works devoted a lot of effort to detect the periodicity in DNA sequences, namely, the DNA segments that wrap the Histone protein. In this paper, we describe and apply a dynamic periodicity detection algorithm to discover periodicity in DNA sequences. Our algorithm is based on suffix tree as the underlying data structure. The proposed approach considers the periodicity of alternative substrings, in addition to considering dynamic window to detect the periodicity of certain instances of substrings. We demonstrate the applicability and effectiveness of the proposed approach by reporting test results on three data sets.
منابع مشابه
Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملCategorical spectral analysis of periodicity in nucleosomal DNA
DNA helical twist imposes geometric constraints on the location of histone-DNA interaction sites along nucleosomal DNA. Certain 10.5-bp periodic nucleotides in phase with these geometric constraints have been suggested to facilitate nucleosome positioning. However, the extent of nucleotide periodicity in nucleosomal DNA and its significance in directing nucleosome positioning still remain uncle...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007